Bromine-Mediated Addition of Nucleophiles to the Electron-Rich Pyrimidine Subunit of Tirilazad

John E. Cabaj, ${ }^{*}$ Peter G. M. Wuts, and Kevin E. Henegar

Chemical Process Research and Development, 1500-91-2, The Upjohn Company, Kalamazoo, Michigan 49001

Received January 20, 1994
Tirilazad (1a) is a 21 -amino steroid first synthesized by Jacobsen and co-workers. ${ }^{1}$ The mesylate salt is currently in phase III clinical trials for the treatment of traumatic central nervous system injuries. While trying to synthesize two suspected impurities formed in the plant scale synthesis, we have discovered a mild, brominemediated addition of nucleophiles to the pyrimidine subunit. ${ }^{2}$

1
a: $\mathrm{R}=\mathrm{H}$, Tirilazad
b: $R=\mathrm{CH}_{2} \mathrm{COCH}_{3}, \mathrm{U}-96,970$
c: $\mathrm{R}=\mathrm{OH}, \mathrm{U}-97,945$
The two impurities, which were needed for toxicology studies, are designated as U-96,760 (1b) and U-97,945 (1c). ${ }^{3}$ Our initial goal was to halogenate the C-5 position, with the hope that we could perform a transition-metalmediated coupling reaction with an appropriate nucleophile. However, attempted iodination of 2 a with $\mathrm{KI}_{3}\left(\mathrm{I}_{2}\right.$, $\mathrm{KI}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}$) unexpectedly produced the dimer $\mathbf{2 b}$ in 77% yield after chromatography. Chlorination ${ }^{4}\left(\mathrm{Ca}\left(\mathrm{OCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}\right.\right.$ to rt) was successful and cleanly produced the moderately stable chloride 2 c in 78% yield after recrystallization. ${ }^{5}$ Attempted $\mathrm{Pd}(0)$ - and $\mathrm{Cu}(\mathrm{I})$-mediated couplings of 2 c with various nucleophiles resulted in dechlorination to give 2a. Radical-mediated couplings gave a complicated mixture of products.

While examining the bromination of $2 \mathbf{a}$ with bromine ($\left.\mathrm{Br}_{2}, \mathrm{NaOAc}, \mathrm{HOAc}\right){ }^{6}$ we discovered, to our surprise, that the acetate $2 \mathbf{d}$ was produced in 75% yield after aqueous

[^0]

Scheme 1^{a} $\xrightarrow[75 \%]{\mathrm{a}}$ 2d

${ }^{a}$ Key: (a) $\mathrm{Br}_{2}, \mathrm{NaOAc}, \mathrm{HOAc}$, rt, then $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$; (b) Br_{2}, $\mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$, rt.

bicarbonate workup and recrystallization (Scheme 1). We subsequently determined that the acetate addition was probably occurring during the bicarbonate workup. When 2a was treated with 1.0 equiv of Br_{2} and 3.3 equiv of NaOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ at a pH of $9,2 \mathrm{~d}$ was isolated in 82% yield after chromatography. This reaction can be extended to pyrimidine 3 to give the acetate 4. However, the chloropyrimidine 5^{1} and the C-6 methoxypyrimidine 7 afforded the bromides 6 and 8, respectively. Acetate 2d and other C-5 esters of 2 a have been made previously using peracids. ${ }^{7}$ Treatment of 2d with anhydrous KOH under Gassman conditions ${ }^{8}$ yields the unstable 5 -hydroxy compound. This compound can be observed by chromatography (HPLC and TLC) and can be isolated in impure form as a solid, but it has very limited stability in solution. The 5 -hydroxy compound was trapped with methyl iodide to give the 5 -methoxy compound $\mathbf{2 g}$. Standard basic hydrolysis, transesterification, as well as

[^1]Table 1. Bromine-Mediated Additions to Pyrimidine 2a

entry	conditions	product	yield (\%) ${ }^{a}$
1	$\mathrm{Br}_{2}, \mathrm{NaOAc}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{rt}$	2d	82
2	$\mathrm{Br}_{2}, \mathrm{NaCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}, \mathrm{rt}$	2 e	72
3	Br_{2}, succinimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{NaHCO}_{3}$, rt	$2 f$	65

${ }^{a}$ Isolated yields.
Scheme 2

9

10
Dibal reduction of the acetate $\mathbf{2 d}$, gave only recovered starting material.
With pyrimidine $2 \mathbf{a}$ as a test substrate, we examined the addition of other species to the pyrimidine ring, using Br_{2} under mildly basic conditions (pH 9 , Table 1). As can be seen from the table, acetate, cyanide, and succinimide can be added at room temperature. While C-5 bromination of pyrimidines and subsequent displacement with nucleophiles is known, ${ }^{2}$ to our knowledge the mild one-pot addition described above is not. It is interesting to note that the major product isolated from treatment of 2 a with NBS was also the succinimide $\mathbf{2 f}$.

Compound $\mathbf{1 b}$ was eventually synthesized by the route shown in Scheme 2. Heating 2 a with 3 -chloro-2-(tetrahydropyranyloxy)propene ${ }^{9}$ in DMF gave the ketone 9 upon Boc removal with TFA. Coupling of the resultant TFA salt with the 21 -chloro steroid 10 produced U-96,760 in 3% overall yield from 2a. To date, the 5 '-hydroxy compound $1 \mathbf{c}$ has been unattainable.
In conclusion, we have discovered a mild, brominemediated addition of acetate, cyanide, and succinimide to the C-5 position of the pyrimidine subunit of tirilazad. The mild conditions and one-pot procedure make this a viable route to other C-5 substituted triaminopyrimidines, as well.

Experimental Section

General Methods. Glassware and hypodermic needles were oven-dried and nitrogen-purged prior to use. THF was distilled from sodium benzophenone ketyl prior to use. Methylene chloride, DMF, and acetonitrile were purchased from EM Science or Burdick and Jackson and used as received. Acetic acid was purchased from Mallinkrodt and used as received. All reagents were purchased and used as received. TLC was performed using EM Science Kieselgel $60 \mathrm{~F}_{254}$ plates. EM Science 230-400 mesh silica gel was used for flash chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded at 300 and 75 MHz , respectively. Chemical shifts are reported in parts per million using TMS as an internal standard. Infrared spectra were run as KBr pellets or Nujol

[^2]mulls by Upjohn PAC. Mass spectra were recorded by Upjohn PAC. Elemental analyses were also performed by Upjohn Physical and Analytical Chemistry. Melting points are uncorrected.

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyrrolidinyl)pyrimidine (2a). To 50.0 g (166 mmol) of 4-(1-piperazinyl)-2,6-bis(1-pyrrolidinyl)pyrimidine ${ }^{1}$ in 150 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $36.1 \mathrm{~g}(166 \mathrm{mmol})$ of $\mathrm{Boc}_{2} \mathrm{O}$. After $2 \mathrm{~h}, 200$ mL of heptane was added to the slurry. The slurry was then cooled to $-20^{\circ} \mathrm{C}$ for 2.5 h , filtered, washed with $-20^{\circ} \mathrm{C}$ heptane ($3 \times 6 \mathrm{~mL}$), and dried via high vacuum to give $60.5 \mathrm{~g}(91 \%)$ of 2a as a white solid. Mp: $164-165{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 4.85 ($\mathrm{s}, 1 \mathrm{H}$), 3.52 (m, 12 H), 3.42 (bs, 4 H), $1.90(\mathrm{~m}, 8 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 163.94,162.51,160.21,154.9,79.73$, $72.55,46.20,46.07,44.34,28.46,25.58,25.33 \mathrm{ppm}$. IR (KBr): $1700,1560,1438,1350,1225,1150 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2}$: 402.2743. Found: 402.2760. Anal. Calcd for C_{21} $\mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, $62.50 ; \mathrm{H}, 8.73 ; \mathrm{N}, 20.83$. Found: C, $62.70 ; \mathrm{H}, 8.52$; N, 20.89 .

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyrrolidinyl)pyrimidine Dimer (2b). To 10.0 g (24.8 mmol) of 2a were added 100 mL of $\mathrm{CH}_{3} \mathrm{CN}, 3.40 \mathrm{~g}(25.0 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, $8.22 \mathrm{~g}(49.0 \mathrm{mmol})$ of $\mathrm{KI}, 7.00 \mathrm{~g}(27.0 \mathrm{mmol})$ of I_{2} and 20 mL of water. The reaction was heated to $70^{\circ} \mathrm{C}$ for 2.5 h and then cooled to rt , at which point 25 mL of $38 \% \mathrm{NaHSO}_{3}$ was added. The $\mathrm{CH}_{3} \mathrm{CN}$ was removed with a rotary evaporator and 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. Washing with water and drying with $\mathrm{Na}_{2}-$ SO_{4} gave the crude dimer as a brown foam, after concentration. Filtration followed by flash chromatography using 30% ethyl acetate/cyclohexane gave $7.68 \mathrm{~g}(77 \%)$ of the dimer 2 b as a white solid. Mp: $214-216{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 3.51 ($\mathrm{m}, 8 \mathrm{H}$), 3.42 $(\mathrm{m}, 8 \mathrm{H}), 3.20(\mathrm{~m}, 16 \mathrm{H}), 1.92(\mathrm{~m}, 8 \mathrm{H}), 1.75(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 18 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 165.14, 161.79, 158.63, 154.86, 91.11 , $79.44,48.61,47.85,46.14,28.47,25.69,25.56 \mathrm{ppm}$. IR (mull): $1700,1530,1420,1240,1160 \mathrm{~cm}^{-1}$. HRMS (FAB) calcd for $\mathrm{C}_{42}-$ $\mathrm{H}_{66} \mathrm{~N}_{12} \mathrm{O}_{4}$: 802.5330. Found: 802.5325.

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyr-rolidinyl)-5-chloropyrimidine (2c). To the biphasic mixture of 28.32 g (70.45 mmol) of $\mathbf{2 a}$ in 560 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 280 mL of pH 4 buffer at $0^{\circ} \mathrm{C}$ was added $10.12 \mathrm{~g}(70.77 \mathrm{mmol})$ of Ca $(\mathrm{OCl})_{2}$. After 0.5 h the reaction was warmed to rt and stirred for an additional 2 h . The layers were then separated, and the organic phase was washed with 100 mL of water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Heptane (100 mL) was then added, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and most of the heptane were removed with a rotary evaporator to give an oily solid. An additional 100 mL of heptane and 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, and the solids were dissolved by gentle warming, allowed to cool to rt , and then were cooled to $-20^{\circ} \mathrm{C}$. Filtration and washing of the solids with heptane ($3 \times$ 20 mL) gave $28.21 \mathrm{~g}(92 \%)$ of the chloride 2 c as a brown solid. Filtration of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the crude chloride through magnesol and crystallization of the resultant oil from tert-butyl methyl ether gave 26.57 g (78%, two crops) of 2 c as a near white solid. Mp: $131-132{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $3.62(\mathrm{bt}, J=6.6 \mathrm{~Hz}$, $4 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.40(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $164.20,160.82,157.01,154.99,87.72,79.60$, 49.69, 48.33, 46.40, 28.47, 25.68, 25.61 ppm . IR (mull): 1710, $1540,1460,1380,1360,1350,1250,1160 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ClN}_{6} \mathrm{O}_{2}: 436.2353$. Found: 436.2345 .

4-(1-Piperidinyl)-2,6-bis(1-pyrrolidinyl)pyrimidine (3). To 0.47 mL (4.7 mmol) of piperidine in 5 mL of THF at $0^{\circ} \mathrm{C}$ was added $3.3 \mathrm{~mL}(4.3 \mathrm{mmol})$ of $n-\mathrm{BuLi}$. After $45 \mathrm{~min}, 1.00 \mathrm{~g}(3.95$ mmol) of 5 dissolved in 5 mL of THF was added. Stirring was continued for 1 h at which point the THF was removed with a rotary evaporator. The resultant brown solids were filtered, washed with water, and dried via high vacuum to give 1.15 g (97%) of crude 3. Purification by flash chromatography using 20% ethyl acetate/cyclohexane as eluent gave $1.01 \mathrm{~g}(85 \%)$ of 3 as a white solid. Mp: $143-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl} \mathrm{I}_{3}$): 4.87 (s , $1 \mathrm{H}), 3.50(\mathrm{~m}, 8 \mathrm{H}), 3.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{~m}, 8 \mathrm{H}), 1.68$ $(\mathrm{m}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $164.02,162.59,160.39,72.73$, $46.18,46.03,45.52,25.61,25.52,25.35,25.07 \mathrm{ppm}$. IR (mull): 1570, 1553, 1447, 1434, 1352, 1345, 1333, $1234 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{5}$: 301.2266. Found: 301.2263. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{5}$: $\mathrm{C}, 67.97 ; \mathrm{H}, 8.72 ; \mathrm{N}, 23.31$. Found: C, 67.73 ; H, 9.11 ; N, 23.26.

2,6-Bis(1-pyrrolidinyl)-4-methoxypyrimidine (7). To 1.00 g (3.95 mmol) of 5 in 7 mL of DMSO was added 1.08 g (20.0
mmol) of NaOCH_{3}. The brown slurry was heated at $115^{\circ} \mathrm{C}$ for 16 h . The resultant solids were dissolved in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water ($4 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give $1.03 \mathrm{~g}(100 \%)$ of 7 as a tan solid. Purification by flash chromatography using 20% ethyl acetate/cyclohexane as eluent gave $0.70 \mathrm{~g}(71 \%)$ of 7 as a white solid. Mp: 88$89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $5.00(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}$, $4 \mathrm{H}), 3.42(\mathrm{bs}, 4 \mathrm{H}), 1.92(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 170.65 , $162.96,160.15,73.65,52.88,46.29,46.12,25.55,25.30 \mathrm{ppm}$. IR (mull): 1566, 1523, 1451, 1396, 1346, $1349 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}: 248.1637$. Found: 248.1638.

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyr-rolidinyl)-5-acetylpyrimidine (2d). To a solution of 10.03 g (25.0 mmol) of 2a, $7.03 \mathrm{~g}(85.0 \mathrm{mmol})$ of NaOAc , and 200 mL of acetic acid was added $1.3 \mathrm{~mL}(25 \mathrm{mmol})$ of Br_{2}. After stirring of the solution for $2 \mathrm{~h}, 200 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the brown solution was washed with water ($4 \times 100 \mathrm{~mL}$) and saturated $\mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give $11.03 \mathrm{~g}(96 \%)$ of 2 d as a gold foam. Crystallization from MeOH gave a 75% yield of the acetate 2 d as a yellow solid. $\mathrm{Mp}: 176-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 3.44 (m, 16H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 168.95,158.65,156.72,156.00,154.96,110.96,79.66$, $48.25,47.45,46.39,28.45,25.65,25.44,20.68 \mathrm{ppm}$. IR (mull): $1780,1710,1550,1450,1370,1340,1160 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4}$: 460.2798 . Found: 460.2808 .

4-(1-Piperidinyl)-2,6-bis(1-pyrrolidinyl)-5-acetylpyrimidine (4). Compound 4 was generated with 1.00 g of 3 as the starting material and the same procedure as that for the synthesis of 2 d . Flash chromatography of the crude product gives $0.85 \mathrm{~g}(71 \%)$ of 4 as a colorless glass. Mp: $104-105^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 3.49$ (bt, $\left.J=6.1 \mathrm{~Hz}, 8 \mathrm{H}\right), 3.36(\mathrm{bs}, 4 \mathrm{H}), 2.19$ (s, 3H), $1.86(\mathrm{~m}, 8 \mathrm{H}), 1.57(\mathrm{bs}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $169.13,159.13,156.83,156.03,110.82,48.62,48.29,46.37,26.94$, $26.27,25.69,25.47,20.67 \mathrm{ppm}$. IR (mull): $1749,1564,1446$, 1346, 1300, 1212, $1201 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$: 359.2321. Found: 359.2324. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 63.48 ; H, 8.13; N, 19.48. Found: C, 63.53 ; H, 8.17; N, 19.52.

2,4-Bis(1-pyrrolidinyl)-5-bromo-6-chloropyrimidine (6). Compound 6 was generated with 1.00 g of 5 as starting material and the same procedure as that for the synthesis of 2d. Flash chromatography gave 1.01 g (81%) of 6 as a white solid. Mp: $102-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 3.75 (bt, $J=6.7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.48 (bt, $J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.90(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $159.87,159.82,156.98,86.38,50.23,46.63,25.71,25.51 \mathrm{ppm}$. IR (mull): 1566, 1553, 1538, 1527, 1489, 1476, 1451, 1443, 1343, 1333, $1302 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{BrCl}: \mathrm{C}, 43.46 ; \mathrm{H}$, 4.86; N, 16.89. Found: C, $43.55 ; \mathrm{H}, 4.90 ; \mathrm{N}, 16.90$.

2,4-Bis(1-pyrrolidinyl)-5-bromo-6-methoxypyrimidine (8). To $0.66 \mathrm{~g}(2.7 \mathrm{mmol})$ of $7,0.73 \mathrm{~g}(8.9 \mathrm{mmol})$ of $\mathrm{NaOAc}, 20 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 7 mL of water was added $0.14 \mathrm{~mL}(2.7 \mathrm{mmol})$ of Br_{2}. After 1.5 h , the mixture was worked up by washing with water ($2 \times 7 \mathrm{~mL}$), drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrating to give 0.92 g of 8 as a gold oily solid. Flash chromatography using 5% ethyl acetate/cyclohexane as eluent gave $0.79 \mathrm{~g}(91 \%)$ of $\mathbf{8}$ as a white solid. This compound is extremely unstable. Mp: 78$79{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~m}$, $4 \mathrm{H}), 1.88(\mathrm{~m}, 8 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 166.41, 160.46 , $157.39,72.24,53.87,49.85,46.41,25.71,25.58 \mathrm{ppm}$. IR (mull): $1577,1564,1549,1542,1516,1450,1434,1344 \mathrm{~cm}^{-1}$. HRMS
(EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}$: 326.0743. Found: 326.0740. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrN}_{4} \mathrm{O}: \mathrm{C}, 47.72 ; \mathrm{H}, 5.83 ; \mathrm{N}, 17.12$. Found: C, $47.67 ; \mathrm{H}, 5.87 ; \mathrm{N}, 17.27$. The same procedure was used for the formation of the acetate $2 \mathbf{d}$ using $2 \mathbf{a}$ as the starting material.

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyr-rolidinyl)-5-methoxypyrimidine (2g). Potassium tert-butoxide was dissolved in 5 mL of THF and the solution was degassed with nitrogen. Water ($0.045 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added and the resulting suspension was stirred at room temperature for 1 min . A solution of 2 d in 5 mL of degassed THF was added and the mixture was stirred at room temperature for 15 min . Methyl iodide ($0.62 \mathrm{~mL}, 10 \mathrm{mmol}$) was added and the mixture was stirred for 10 min . The reaction mixture was partitioned between ether and sat. NaCl solution. The organic layer was washed once with sat. NaCl , dried over sodium sulfate, and evaporated to yield $0.397 \mathrm{~g}(92 \%)$ of $\mathbf{2 g}$ as a colorless foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.7(\mathrm{~m}, 16 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 8 \mathrm{H}), 1.37(\mathrm{~s}$, 9 H). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $157.73,156.93,155.64,155.15,120.28$, $79.63,59.25,48.51,47.06,46.56,28.62,25.86,25.66$. IR (mull): $2954,2866,2856,1696,1569,1560,1544,1445,1247,1169 \mathrm{~cm}^{-1}$. MS (EI) m/z 432 (M), 417, 375, 361 (100\%), 331, 317, 276, 57. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{3}$: C, 61.09 ; $\mathrm{H}, 8.39$; N, 19.43 . Found: C, 60.72; H, 8.27; N, 19.19.

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-2,6-bis(1-pyr-rolidinyl)-5-cyanopyrimidine (2e). To 0.50 g (1.2 mmol) of $2 \mathrm{a}, 0.18 \mathrm{~g}(3.7 \mathrm{mmol})$ of $\mathrm{NaCN}, 10 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 2.0 mL of saturated NaHCO_{3} was added $0.062 \mathrm{~mL}(1.2 \mathrm{mmol})$ of Br_{2}. After 2 h , the reaction mixture was diluted with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 5 mL of water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 0.50 g of 2 e as a yellow foam. Flash chromatography using 25% ethyl acetate/cyclohexane as eluent provided 0.38 g (72%) of 2 e as a gold oil which eventually crystallized. Mp: $163-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.66(\mathrm{~m}, 8 \mathrm{H}), 3.52(\mathrm{~m}, 8 \mathrm{H}), 1.91$ $(\mathrm{m}, 8 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (CDCl 3): 167.97, 163.29, $158.69,154.88,121.17,79.87,62.09,48.77,47.40,46.38,28.43$, $26.93,25.37 \mathrm{ppm}$. IR (mull): $2190,1699,1552,1533,1517,1480$, $1450,1420,1345 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{2}$: 427.2696. Found: 427.2700. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{2}$: C, $61.80 ;$ H, 7.78 ; N, 22.93. Found: C, 61.76; H, 7.62; N, 22.81 .

4-[4-(tert-Butoxycarbonyl)-1-piperazinyl]-5-succinimido-2,6-bis(pyrrolidinyl)pyrimidine (2f). To $1.00 \mathrm{~g}(2.49 \mathrm{mmol})$ of $2 \mathrm{a}, 0.50 \mathrm{~g}(5.0 \mathrm{mmol})$ of succinimide, 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 4.0 mL of saturated NaHCO_{3} was added $0.13 \mathrm{~mL}(5.0 \mathrm{mmol})$ of Br_{2}. After 1.5 h , the reaction mixture was diluted with 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 10 mL of water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give 1.42 g of 2 f as a gold foam. Flash chromatography using 50% ethyl acetate/cyclohexane as eluent provided $0.80 \mathrm{~g}(65 \%)$ of 2 f as a white solid. $\mathrm{Mp}: 199-200^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $3.50(\mathrm{bt}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{~m}, 8 \mathrm{H}), 3.00$ $(\mathrm{m}, 4 \mathrm{H}), 2.82(\mathrm{~s}, 4 \mathrm{H}), 1.88(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$ ppm. ${ }^{13}{ }^{3}$ NMR $\left(\mathrm{CDCl}_{3}\right): 178.38,167.03,159.97,158.77,154.86$, $90.27,79.66,49.33,47.83,46.32,28.42,25.55,25.42 \mathrm{ppm}$. IR (mull): 1774, 1712, 1688, 1564, 1539, 1521, 1492, 1475, 1444, $1427 \mathrm{~cm}^{-1}$. HRMS (EI) calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{4}$: 499.2907 . Found: 499.2919. Anal. Caled for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{4}: \mathrm{C}, 60.10 ; \mathrm{H}, 7.46 ; \mathrm{N}$, 19.62. Found: C, $59.74 ;$ H, $7.41 ; \mathrm{N}, 19.44$.

Acknowledgment. Special thanks is given to Brad D. Hewitt for help in preparing this manuscript.

[^0]: * Author to whom correspondence should be addressed.
 (1) Jacobsen, E. J.; McCall, J. M.; Ayer, D. E.; VanDoornick, F. J.; Palmer, J. R.; Belonga, K. L.; Braughler, J. M.; Hall, E. D.; Houser, D. J.; Krook, M. A.; Runge, T. A. J. Med. Chem. 1990, 33, 1145 and references therein.
 (2) For a comprehensive review of pyrimidine chemistry, see: Brown, D. J.; The Pyrimidines; Wiley Interscience: New York, 1962. Brown, D. J.; The Pyrimidines; Wiley Interscience: New York, 1970; Suppl. 1. Brown, D. J.; The Pyrimidines; Wiley Interscience: New York, 1985; Suppl. 2.
 (3) Compound 1c was tentatively assigned based on uv and mass spectral evidence.
 (4) Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 777.
 (5) Fluorination of 2 a with 1 -chloro-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) was also successful and produced the moderately stable C-5 fluoropyrimidine in 95% yield (crude).
 (6) Wriede, U.; Fernandez, M.; West, K. F.; Harcourt, D.; Moore, H. W. J. Org. Chem. 1987, 52, 4485.

[^1]: (7) McCall, J. M.; Jacobsen, E. J. (The Upjohn Company) WO 91/ 11453, 1991.
 (8) Gassman, P. G.; Schenk, W. N. J. Org. Chem. 1977, 42, 918.

[^2]: (9) Knapp, S.; Gibson, F. S. J. Org. Chem. 1992, 57, 4802. Capon, B.; Siddhanta, A. K.; Zucco, C. J. Org. Chem. 1985, 50, 3580.

